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INTRODUCTION

Maraging steels are ultrahigh strength steels which, in contrast to most other
types of steel, have a very low concentration of carbon. They employ substitutional
eleménts such as nickel, molybdenum, and titanium to achieve an age-hardened marten-
sitic structure rather than the usual quench-and-tempered structure. These steels
possess one of the highest combinations of strength and fracture toughness on any
comme.'cially available alloy.

Maraging steels contain a high concentration of nickel (usually 20% to 25%)
which ensures a complete transformation to martensite even with a very slow cool
fror the «.stenization temperature. There is an increase in the thermal hystersis
between the formation of martensite on cooling and austensite reversion on heating
which allows the aging of the martensite matrix at elevated temperatures (around
8500F tc 950°F).1 The precipitation reactions that occur upon aging the martensitic
matrix are mainly responsible for the ultrahigh strengths, hence the term "maraging."

PURPOSE

A conventional 187 Ni 300 grade maraging steel was used by the Army for missile
motor cases. The conventional grades of maraging steels contain between 87 and 15%
cobalt. Cobalt is a strategic and critical material because it has essential defense
related uses and the U S. must import its entire supply. Therefore, a cobalt free
maraging steel, Vasco Max T-250, is being studied as a replacement for the cobalt
containing 187 Ni 300 grade maraging steel.

The investigation reported in this paper was undertaken to characterize the
microstructure of the Vasco Max T-250, and determine the structural changes that
occur during aging.

BACKGROUND

Alloying iron with a high concentration of nickel ensures a total martensitic
structure, even with very slow cooling from the solution annealing temperature by
delaying equilibrium phase nucleation. In addition, the presence of nickel also
reduces the solubility of many other elements (Ti, Mo, Al, etc.) in iron. Lath
martensite forms upon cooling due to the low carbon concentration.2 The martensite
laths act as barriers to slip resulting in increased strength which can be approxi-
mated by the familiar Hall-Petch3,4 relationship:

1
gy = 05 + Kd™?

where
d = average lath size
oy = yield strength
0o and K = material constants.,

The structure of maraging steels after annealing consists of a series of elongated
laths or platelets that contain a high density of dislocations.?:® The dislocations
within the massive martensitic structure tend to be predominant!y screw in nature. ’




It is generally known that the crystal structure of lath martensite is bee. 2

Bec crystals usually slip on the 1110} dodecahedral planes and in the <111> cube
diagonal directions. Slip may also occur on the {112} and {123} planes. Even
though there are a total of %48 possible slip systems, bcc crystals have a relatively
high Peierls-Nabarro stresc and therefore have few mobile dislocations.8 However,
the presence of nickel slightly offsets this effect since nickel reduces the
resistance of the crystal lattice to disloaction motion.

The introduction of dislocations into the steel by means of the metastable
phase transformation increases the flow stress. The dependence of the flow stress
on the dislocaticn densic.y can be determined by:

1=aGb h + 10 Ref. 10)
where

= flow stress

"friction stress"

0.5, a dimensionless constant
the shear modulus

= the Burgers vector

= dislocation density.
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The high dislocation densities found in maraging steels, 1012 cm™2, produce a
dramatic strengthening effect by increasing the flow stress.

The hardening induced during aging of conventional maraging steels results from
the following two mechanisms:

1. The precipitation of various intermetallic compounds that are coherent with
the matrix, and

2. Solid solution strengthening due to the long range order interaction of
cobalt.

Many types of precipitates have been reported in the literature. A consider-
able effort has been directed at characterizing Lhe phases precipitated during aging
and the morphology and distribution of these precipitates. Techniques employed in
these investigations were mainly electron microscopy and X-ray diffraction analysis,

A literature search of the precipitate characterization studies reveals dis-
crepancies in the phases, structure, and morphology. This can be partially at-
tributed to the uncertainties inherent in the techniques employed and the small
particle size, The shage of the precipitates has been re?orfed to be spher-
ical,l1=15 gisk shaped, 6 ribbon shaped,14 or needlelike.}3,:4,1

The most frequenfly reported particle is NijMo. This precip.tate is rod shaped,
having a width of 25 A and a length of 500 A in the peak hardness condition. The
longer axis is paralled to the <111> matrix directions. The orientation .. lation-
ship between NijMo and the martensite matrix has been shown to have been:

(010) NigMo || £011)4 [100] NigMo || [1T1], .

In other words, the closest packed plane and direction in the matrix are puaiailel to
those in the precipitates.




Ni3Ti is the intermetallic compound most often reported for the titanium-rich
precipitates. There is some evidence that suggests that preprecipitate zones may
form during the early stages of aging. Diffraction streaks have been observed in
titanium-rich maraging steel after aging for only two minutes at 950°F, suggesting
that there is a G.P. zone stage preceeding precipitation.13 Diffraction patterns
from thin foils were analyzed and the following relationship between the matrix and
precipitate was developed:

(011)4 I (0001) Ni3Ti [111], |l [1120] NigTi.

These precipitates form parallel to the <l11> matrix directions.l8 The following
mechanism had been proposed: martensite metastable bec ordered Ni3Ti zones (DOj
structure) Widmanstatten [precipitation of stable NijTi phase (DOy4 structure)].

Irrespective of the precipitate origin, these particles impede dislocation
motion. The precipitates are shearable by dislocations, which enhances their
strengthening mechanism, Hardening is due to coherency strains, ordered structure,
and interfacial energy.l2,19,20,2

Precipitates formed during aging have been reported to have nucleate both at
martensite latn boundaries and at dislocations. The heavy dislocation density
provides a uniform distribution of precipitate nucleation sites and, as a result,
the precipitates are uniformly distributed. Large precipitates or precipitate-free
zones at grain boundaries are not normally found. The precipitates nucleate and
grow with a preferred orientation with respect to the matrix due to the preferred
orientation of the dislocations within the martensite matrix.’/ Precipitation us-
ually occurs along the lengths of the dislocations, therefore precipitates lie in
the <111> directions.!

ROLE OF COBALT

In conventional maraging steels, cobalt, in combination with molybdenum, makes
an important contribution to the strengthening of maraging steels. It is generally
believed that cobalt lowers the solubility of molybdenum in the martensite matrix,
therefore, favoring the precipitation of molybdenum containing intermetallic com-
pounds.17’22’23 It has also been suggested that cobalt may affect the dislocation
substructure in the matrix, ultimately providing more uniformly distributed nuclea-
tion sites for precipitation.22,25 The removal of cobalt from maraging steels would
increase the solubility of molybdenum in the martensite matrix and decrease the
probability of molybdenum precipitating to form an intermetallic compound. Therefore,
the cobalt-free maraging steels are most likely hardened by precipitates that do not
contain molybdenum.

EXPERIMENTAL

A supply of cobalt-free maraging steel, Vasco Max T-250, was received from
Teledyne Vasco in the form of rolled 3-inch-diameter bar in the annealed condition.
The composition of Vasco Max T-250 is 76.74% Fe, 18.50% Ni, 3.0% Mo, 1.40% Ti,
0.10% Al, 0.01% Zr, 0.003% B, and not more than 0.10% Si and Mn, 0.03% C, and
0.01% S and P, This composition differs from that of a conventional maraging steel
because it does not contain cobalt, but contains an increased amount of titanium,
and a decreased amount of molybdenum.




At MTL the Vasco Max T-250 solution was annealed at 1500°F and air cooled.
The annealed Vasco Max T-250 was aged at 850°F, 900°F, and 950° for 3, 4, and 8
hours. The solution annealed and aged specimens were analyzed using X-ray dif-
fraction, optical microscopy, and transmission electron microscopy. Foils for
electron microscopy were prepared by chemical thinning using a Fischione Twin Jet
Polisher, with a 20% perchloric 80% methanol polishing solution. The major effort
of this program was to identify the phases precipitated during the aging of the
martensite and determine the shape, size, and distribution of the precipitates.

RESULTS AND DISCUSSION
X-Ray Diffraction

X-ray diffraction analysis was used to determine the phases present in the
annealed and aged samples. Diffraction patterns of the annealed and aged samples
were composed of peaks from the bcc martensite phase. The X-ray diffraction
analysis did not provide any information on the identity of the second phases
present after the aging treatments. The particles could not be identified using
X-ray diffraction either because the crystallite size was too small or, because they
were not present in sufficient quantity.

Optical Microscopy

The annealed and aged specimens of the Vasco Max T-250 were examined using
optical microscopy. The structure of the annealed and aged samples appeared the
same, namely a lath martensite. An optical micrograph of the annealed sample is
shown in Figure 1. Using optical microscopy, all of the samples appear the same,
and it is difficult to distinguish any differences between the annealed and aged
structures.

Electron Microscopy

The annealed and aged specimens of the Vasco Max T-250 were examined using a
JEOL 200 CX scanning transmission electron microscope. At low magnifications, the
structure of the specimens is a typical lath martensite. At higher magnifications,
above 20 kx, differences in the structures, such as dislocation density and precipi-
tate distribution, were observed.

A centered, dark field technique was used to image the dislocations and pre-
cipitates. The dark field technique consists of tilting the incident illumination
so that the diffracted electrons travel along the optic axis. An objective aperture
is inserted into the electron column to allow only the diffracted beam to form the
image.

Annealed Sample

The annealed sample was air cooled from 1500°F, and the resulting microstructure
was a bcc martensite which transformed by diffusionless shear. The microstructure
of the annealed sample is shown in Figure 2; it is a typical lath martensite. The
elonged laths contain a high density of dislocations, as shown in Figure 3.



Precipitation of second phase particles occurred during the aging.of the Vasco
Max T-250. The aging temperature greatly influenced the precipitate size and
distribution.

8500F AGING TREATMENT

In general, the 850CF aging treatment was below the optimum aging temperature
for the T-250 maraging steel because the precipitate density was very low even after
the 8-hour age. The structure of the specimen aged at 850°F for 3 hours is shown in
Figure 4. It is a heavily dislocated lath structure that is typical of all samples
aged at 850°F. A high magnification micrograph of the sample aged at 850°F for 3
hours is shown in Figure 5. It shows the high dislocation density within the laths.
Precipitates are not visible in the bright field in the microstructure of the
samples aged at this temperature. Using the centered dark field technique and
imaging weakly diffracted beams, precipitates were observed in these samples. Dark
field micrographs of samples aged at 850°F for 3, 4, and 8 hours are shown in
Figure 6. The sample aged for 3 hours contains a very low density of fine
precipitates. The precipitates appear needielike and have a slight directionility.
The average size of the precipitates after a 3-hour age is 100 A long and 30 A wide.
The sample aged for 4 hours also has a low density of fine precipitates. The
average size of the precipitates is 100 ) long and 30 X wide. The sample aged for 8
hours at 850°F has a slightly greater density and larger size precipitates than the
samples aged for 3 and 4 hours. The precipitates present_after an 8-hour age are
needlelike and have an average size of 150 ) long and 30 3 wide.

9000F AGING TREATMENT

Aging the T-250 maraging steel at 900CF enabled more precipitation to occur.
The lath martensite structure of the sample aged for 4 hours is shown in Figure 7.
Precipitates are visible in the bright field micrographs. A high mugnification
micrograph of this sample is shown in Figure 8. Dark field micrographs of the sam-
ples aged at 900°F for 3, 4, and 8 hgours are shown in Figure 9. After a 3-hour age,
the average precipitate size is 200 )1 long and 50 A wide. They are very directional
and seem to form a Widmanstatten pattern. After the 4-hour age, the average
precipitate size is 250 A long apd 50 wide. The average precipitate size after an
8-hour age is 250 4 long and 50 A wide. The needlelike precipitates resulting from
the 900°F are larger and present in 2 greater density than after an 8500 age. The
particles precipitated during the 900°F age are uniformly distributed and form a
Widmanstatten pattern.

9500F AGING TREATMENT

The aging treatments at 950°F precipitated a heavy density of needlelike or
rod-shaped particles. The precipitates are visible in bright field and dark field
imaging modes. The lath structure typical of the 950°F aging treatment is shown in
Figure 10. A higher magnification micrograph of the sample aged for 4 hours is
shown in Figure l11. Dark field micrographs of the samples aged for 3, 4, and 8
hourg are shown in Figure 12. The average precipitate size after a 3-hour age is
350 A long and 50 X wide. There is a high density of precipitates in the sample and
they are spaced widely apart. After a 4- and 8-hour age, the average precipitate size
is 450 & long and 70 A wide. The precipitates are widely spaced and form a
Widmanstatten pattern.




PRECIPITATE MORPHOLOGY

Electron diffraction performed on the aged thin foils identified the precipi-
tates as NijTi, a hexagonal intermetallic compound commonly found to precipitate
from high titanium-containing steels.l3 The Ni3Ti particles are rodlike or needle-
like and form with their axes parallel to the <111> of the martensite matrix.
Figure 13 shows a bright field/dark field pair of the sample aged at 900°F for 3
hours. The precipitate cross sections are visible and the micrograph has a <111>
martensite direction parallel to the electron beam.

Many diffraction patterns of the aged samples were analyzed, and similar
diffraction patterns were obtained for most of the aged samples. A typical electron
diffractior ~attern from samples aged at 900°F and 950°F is shown in Figure 14,

The orientation of the matrix is (011), and this demonstrates the relation between
the matrix and precipitate: (011)y || (0001)n and [111]y || [1120]y. A schematic
diagram showing the orientation relationship is shown in Figure 15.

The precipitates were identified using electron diffraction of thin foils. Due
to the uncertainties inherent in the electron diffraction technique, additional
testing should be done to confirm the identity of the precipitates. The precipi-
tates should be extracted from the matrix for further analysis,

The removal of cobalt from the composition of the maraging steel, Vasco Max T-
250, increases the solubility of molybdenum in ‘the martensite matrix, thereby
decreasing the probability of precipitating molybdenum-containing second-phase
particles. The increased titanium content and the decreased molybdenum content of
Vasco Max T-250 and the decreased probability of precipitating molybdenum inter-
metallic compounds favors the precipitation of titanium-containing second-phase
particles. Titanium plays a dual role of hardener and refining agent to tie up the
residual carbon. The titanium-rich compositions nNi3Ti is the intermetallic com-
pound most often found!3 and it forms in a Widmanstatten pattern of a stable DOy
structure. It has been suggested that preprecipitate zones may ferm during the
initial stages of age hardening. Metastable bcc ordered NijTi zones may appear
before the n Ni3jTi becomes stable. 13 This could account for the difficulty of
observing and identifying the precipitates in the samples aged at 850°F for 3 and 4
hours.

A summary of the precipitate size and distribution is presented in Table 1. It
appears that the largest size and distribution of precipitates is present after the
9500F aging treatments. The dislocation density decreases with an increase in the

Table 1. COBALT-FREE MARAGING STEEL, VASCO MAX T-250

Precipitate Size

[ °

Heat Treatment Length (A) ydth (A)
Annealed No Precipitates

850°F, 3 hours 50-150 30
850°F, 4 hours 50-150 30
850°F, 8 hours 100-200 30
900°F, 3 hours 100-300 50
900°F, 4 hours 100-400 50
900°F, 8 hours 100-400 50
950°F, 3 hours 200-500 50
950°F, 4 hours 200-700 60
950°F, 8 hours 200-700 60

[99Y



aging temperature and time. The precipitates become more widely spaced and a better
defined Widmanstatten pattern develops as the aging temperature increases., As was
expected from Fick's first and second laws of diffusion, the aging temperature has a
greater influence on the structure of the Vasco Max T-250 than the aging time. The
effect of aging time would become more pronounced if the aging times were orders of
magnitude longer.

Cobalt-containing maraging steels are usually aged at 900°F for between 3 and 6
hours to achieve peak strength. Aging the conventional maraging steels at tem-
peratures greater than 900°F produces a decrease in the strength because the pre-
cipitates become incoherent with the matrix, and reversion to austenite occurs. The
Vasco Max T-250 aged at 950°F contained the largest precipitates and the highest
density of precipitates. At 9509F, the precipitates are still coherent with the
matrix and form a Widmanstatten pattern which inhibits the dislocation motion and
increases the strength, Therefore, the 950°F aging treatment is considered the
optimum treatment because of precipitate morpholcgy. The cobalt-containing and
cobalt~free maraging steels are strengthened by different phases, therefore, the
optimum aging temperatures are different. The difference in diffusion rates of the
strengthening precipitates determines the optimum aging temperature. Conventional
maraging steels are most often strengthened with NiyTi precipitates and the Vasco
Max T-250 cobalt-free maraging steel is strengthened with NijTi precipitates.

CONCLUSION

The microstructure of the Vasco Max T-250, a cobalt-free maraging steel, was
characterized in the annealed and aged condition. In the annealed condition, the
structure consisted of a heavily dislocated lath martensite. After aging the Vasco
Max T-250, very fine second-phase particles precipitated from the lath martensite
structure. These second-phase particles were identified through electron dif-
fraction ae NijTi, a stable, coherent, intermetallic compound. The aging temp-
erature influenced the precipitate size and distribution more than the time at
temperature. As the aging temperature was increased...they became more widely
spaced. The Ni3Ti particles formed in a Widmanstatten pattern and greatly enhanced
the strength of the martensite.
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Figure 2. Transmission electron micrograph of the annealed sample
showing the lath martensite structure. Mag. 20KX




Figure 3. Heavily dislocated lath in the
annealed sample. Mag. 50KX
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Figure 4, Typical lath martensite structure
from the sample aged at 850™F for
3 hours. Mag. 20KX

Figure 5. Elongated lath containing a high
density dislocation and some second phase
particles from the sample aged at 850°F
for 3 hours. Mag. 100KX
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sample aged for 3 hours

sample aged for 4 hours

sample aged for 8 hours

Figure 6. Dark field micrographs of the samples
aged at 850°F for 3, 4, and 8 hours. Mag. 100KX
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Figure 7. Lath martensite structure of the sample aged at 900°F
for 4 hours. Mag, 20KX

Figure 8. Lath containing second phase particles from the sample aged at 900°F
for 4 hours. Mag. 100KX
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sample aged for 4 hours

sample aged for 8 hours

Figure 9. Dari: field micrographs of the samples
aged at 900CF for 3, 4, and 8 hours. Mag. 100KX
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Figure 10. Lath martensite structure of the sample aged at 950°F
for 4 hours, Mag. 20KX

Figure 11. Electron micrograph of the sample aged at 950°F
for 4 hours showing the precipitates. Mag. 100KX
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sample aged for 4 hours

sample aged for 8 hours

Figure 12, Dark field micrographs of the samples
aged at 950°F for 3, 4, and 8 hours. Mag. 100KX
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Figure 13. Bright field/dark field pair of the samples aged at 900°F for 3 hours showing the
cross sections of the precipitates. Mag. 100KX

Figure 14. Electron diffraction pattern 8 = {011)
for the matrix and B = (0001) for the precipitates.
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